
Sets

We will look at several ways to implement sets. We generally
want sets to have unique elements -- an object x either is or is
not an element of set S; it can't be an element of S more than
once.

We will give 4 methods for each implementation --

• (make-set lat) which coverts a simple list of elements into a
set.

• (element? x s) that returns #t or #f according to whether x
is an element of set s.

• (union set1 set2)
• (intersection set1 set2)

Version 1: We represent the set as a list of unique items; for
(make-set lat) we only need to remove the duplicate entries of
lat. Union and Intersection are easy.

Version II: We represent a set by a function that says if a
particular element is a member of that set.

Version III: We represent a set by a Binary Search Tree that contains
its elements. Note that here we need element values that can be
compared; we will assume our elements are numbers.

Now, what can you say about the three implementations?

• Which is more efficient?
• Which is easier to implement?
• Are there things you would like to do with sets that some

implementations don't support?

